Program Studi : Pendidikan Matematika (S2)
Mata Kuliah : Filsafat Ilmu
Jumlah Semester : 2
Semester : Gasal
Dosen : Dr. Marsigit, MA
Kajian perkuliahan meliputi:
(1) Persoalan-persoalan Pokok dalam Pengembangan Ilmu (Matematika dan Pendidikan Matematika),
(2) Karakteristik Ilmu (Matematika dan Pendidikan Matematika),
(3) Obyek Ilmu (Matematika dan Pendidikan Matematika),
(4) Metode Pengembangan Ilmu (Matematika dan Pendidikan Matematika),
(5) Alat Pengembangan Ilmu (Matematika dan Pendidikan Matematika),
(6) Sejarah Perkembangan Ilmu (Matematika dan Pendidikan Matematika),
(7) Pre-Asumsi dan Asumsi Dasar Pengembangan Ilmu (Matematika dan Pendidikan Matematika),
(8) Sumber-sumber dan Batas-batas Pengembangan Ilmu (Matematika dan Pendidikan Matematika),
(9) Pembenaran Ilmu (Matematika dan Pendidikan Matematika),
(10) Prinsip-prinsip Pengembangan Ilmu (Matematika dan Pendidikan Matematika),
(11) Berbagai Aliran Pengembangan Ilmu (Matematika dan Pendidikan Matematika),
(12) Ontologi Ilmu (Matematika dan Pendidikan Matematika),
(13) Epistemologi Ilmu (Matematika dan Pendidikan Matematika), dan
(14) Aksiologi Ilmu (Matematika dan Pendidikan Matematika),
(15) Filsafat Matematika,
(16) Filsafat Pendidikan Matematika
Perkuliahan tatap muka meliputi:
1. eksposisi dari dosen,
2. presentasi mahasiswa,
3. diskusi dosen mahasiswa, mahasiswa-mahasiswa,
4. mencari dan mengembangkan sumber belajar (internet dan referensi buku),
5. menyusun makalah untuk topik-topik terkait,
6. presentasi makalah,
7. balikan dosen
a. Tugas Mandiri Eksplorasi Sumber
b. Diskusi Kelas
c. Presentasi
d. Seminar
e. Ujian Sisipan
f. Ujian Akhir
2. Perkuliahan Online
Kuliah dan Tanya Jawab Online melalui http://powermathematics.blogspot.com
2. Ernest, P., 1994, Mathematics, Education and Philosophy: An International
Perspective. The Falmer Press: London.
3. Ernest, P., 2002, What Is The Philosophy Of Mathematics Education?
4. Eves, H and Newsom, C.V., 1964, “An Introduction to the Foundation & Fundamental Concepts of Mathematics”, New York: Holt, Rinehart and Winston
5. Ewald, W., 1996, “From Kant to Hilbert: A Source Book in the Foundations of Mathematics, Volume I”, Oxford: Clarendon Press
6. Hers, R., 1997, What is Mathematics, Really?, London: Jonathan Cape
7. Kant, I., 1781, Critic of Pure Reason, Translatedby J.M.D. Meiklejohn
8. Mayer, F., 1951, “A History of Modern Philosophy”, New York: American Book Company
9. Perry, R.B., 1912, Present Philosophical Tendencies: A Critical Survey of Naturalism Idealism Pragmatism and Realism Together with a Synopsis of the Pilosophy of William James, New York: Longmans Green and Co.
Tambahan:
1. Bold, T., 2004, “Concepts on Mathematical Concepts” <http://www.usfca.edu/philosophy/discourse/8/bold.doc.>
2. Bonaccini, J.A., 2004, “Concerning the Relationship Between Non-Spatiotemporality and Unknowability of Things in Themselves in Kant's Critique of Pure Reason”, Federal University of Rio Grande do Norte/National Research and Development Council, Brazil, <juan@cchla.ufrn.br >
3. Bowman, C., 2001, “Kant and the Project of Enlightenment”, Department of Philosophy, University of Pennsylvania
4. Brook, A., 2004, “Kant and Cognitive Science, <http://www.teleskop.es/ciencia/CienciaA03>
5. Byrne, P., 2004, Moral Arguments for the Existence of God, Stanford Encyclopedia of Philosophy, <peter.byrne@kcl.ac.uk>
6. Carrier, M., 2003, How to tell causes from effects: Kant's causal theory of time and modern approaches, Studies In History and Philosophy of Science Part A Volume 34, Issue 1 , Pages 59-71, Elsevier Science Ltd., < http://dx. doi/org/10/1016/S0039>
7. Chignell, A., 2004, “The Problem of Particularity in Kant’s Aesthetic Theory, Aesthetics and Philosophy of the Arts”, <http://www.bu.edu/wcp/ MainAest.htm>
8. Clarke. “Kant's Critique of Pure Reason.” BOOK II: ANALYTIC OF PRINCIPLE”,<http://www.bright.net/~clarke/kant/analogy1.htm>
9. Evan, J.D.G., 1999, “Kant's Analysis of the Paralogism of Rational Psychology in Critique of Pure Reason” Edition B, Kantian Review vol. 3 (1999), 99-105
10. Eves, H and Newsom, C.V., 1964, “An Introduction to the Foundation & Fundamental Concepts of Mathematics”, New York: Holt, Rinehart and Winston
11. Gos, M., 2003, “Mathematical Models of Spacetime in Contemporary Physics and Essential Issues of the Ontology of Spacetime, Philosophy of Mathematics”, <http: //www. bu.edu /wcp/MainMath.htm>
12. Gottfried, P., 1987, “Kantian Time And Space Reconsidered “, FORMS OF INTUITION, Issue Date: AUGUST 1987 Volume:02 Page: 689, <http://www.worldandi.com/subscribers/toc.asp>
13. Hegel, G.W.F, 1873, “The Critical Philosophy: from The Shorter Logic”, translated by William Wallace, Clarendon Press
14. Hers, R., 1997, “What is Mathematics”, Really?, London: Jonathan Cape, pp.9
15. Hoover, A.J., 2004, “Arguments for the Existence of God” <http://www.ditex.com/index.html>
16. Hutchison, F., 2004, “Cultural Cycles IX: Rationalism vs Empiricism, index.htm IV. Second Attitude of Thought to Objectivity”, Encyclopaedia of the Philosophical Sciences,<http://www.marxists.org/reference/ archive/hegel/index.htm>
17. Irvine, A.D., 2003, “Principia Mathematica”, Stanford Encyclopedia of Philosophy,<http://plato.standford.edu/cgi-bin/encyclopedia/ archinfo.cgi? entry=principia mathematica>
18. Jarosław Mrozek , 2004, “Philosophy of Mathematics: The Problems of Understanding Mathematics”, Gdańsk: University of Gdańsk Kant, I., 1783, “Prolegomena to An Future Metaphysic (tr. By Paul Carus)”, <www.phil-books.com/ >
19. Johnes, R.B., 2004, “Transcendental Doctrine of Method”,<http://www.rbjohnes.com/http://www.rbjones.com/L:\GRAND.DISSERTASI.AFTER.KOMPRE\
index.htm>
20. Jones, R.B.,1997, A Short History of Rigour in Mathematics, <http://www.rbjones.com/rbjpub/rbj.htm>
21. Kant, I, 1783. “Prolegomena to Any Future Metaphysic.” Trans. Paul Carus. <www.phil-books.com/ >
22. Kant, I. “The Critic of Pure Reason.” Trans. Meiklejohn, J.M.D. New York: The MaCmillan Company. 1914. <http://www.encarta.msn. com/>
23. Kant, I. “Theoretical Philosophy 1755-1770.” Trans. David Walford. Cambridge: Cambridge University Press. 1992
24. Kant, I., 1790, The Critic of Judgment, translated by James Creed Meredith
25. Kant, I., 1931, “The Critique of Judgment (tr. J.Bernard)”, New York: The MaCmillan Company.
26. Kazlev, A.A., 2004, René Descartes And The Legacy Of Mind/Body Dualism,<http://serendip.brynmawr.edu/Mind/Descartes.html >
27. Kelley, D., 1996, Foundations Study Guide: Epistemology, Objectivist Center,<http://www.objectivistcenter.org/text/ foundations epistemology. osp>
28. KLEIN, P.D., 1998, “Epistemology” In E. Craig (Ed.), Routledge Encyclopedia of Philosophy. London: Routledge. <http://www.rep.routledge.com /article/P059>
29. Koetsier, T., 1991, “Lakatos' Philosophy of Mathematics, A Historical Approach”,<http://www.peccate.com/
30. Krausz in Tuchanska, B.,1999, “Is a Non-Foundationalist Epistemology Possible?”,<http://www.Google.com/Tuchanska>
31. Landry, E., 2004, Semantic Realism: Why Mathematicians Mean What They Say,
32. Law, M., et. Al, 1998, “Critical Review Form for Qualitative Studies.” McMaster University Occupational Therapy Evidence-Based Practice Research Group.
33. Lemanska, A., 2004, “Philosophy of Mathematics: The Issue of Experiment in Mathematics”, Christian Philosophy of Academy of Catholic Theology
34. Linnebo, Ø., 2003, “Review of Stewart Shapiro, Philosophy of Mathematics: Structure and Ontology”, < http://www.oystein.linnebo@filosofi.uio.no>
35. Linnebo, O., 2003, Frege’s Conception of Logic: From Kant to Grundgesetze,<http://folk.uio.no/oysteinl/FregesConception.pdf.>
36. Litlangs, 2002-2004, “Math Theory” <http://www.poetrymagic.co.uk/professional.html>http://www.sciencedirect.com/science?_ob=journalURL&_cdi
37. Manicas, P.T. 2003, Naturalism and Subjectivism: Philosophy for the Future?. <Future Philosophy.PDF>
38. Mattey, G.J., 2004, Kant Lexicon, G. J. Mattey's Kant Home Page, http://www.philosophy.ucdavis.edu/kant/KANT.HTM
39. Mayer, F., 1951, A History of Modern Philosophy, California: American Book Company
40. Miller, B., 1976, Existence, Stanford Encyclopedia of Philosophy,<http://www.seop.leeds.ac.uk/index.htm>
41. Mortensen, C., 2000, “Inconsistent Mathematics”, <http:www.mortensen>
42. Mrozek , J. “Philosophy of Mathematics: The Problems of Understanding Mathematics.” Gdańsk: University of Gdańsk. 2004
43. Mycielski, J.,2000, “Ontology of Mathematics.” Colorado: FOM EDU.2000.<jmyciel@euclid.>
44. Nikulin, D., 2004, Platonic Mathematics: Matter, Imagination and Geometry- Ontology,Natural Philosophy and Mathematics in Plotinus, Proclus and Descartes,
<http://www.amazon.com/exec/obidos/ AZIN/075461574/ wordtradecom>
45. Oddie, G., 2001, Truthlikeness, Stanford Encyclopedia of Philosophy, Paideia, Philosophy of Mathematics. <elaine@philo.mcgill.ca>
46. Otte, M. , 2001, “ Mathematical Epistemology From A Semiotic Point Of View: Paper presented at PME 2001 in Utrecht”, <http://www.math. uncc.edu / ~sae/dg3/otte-ew- PME25.pdf.>
47. Perry, J., 1996, Philosophy 102: Descartes to Kant, <http://cbl.leed.ac.uk>
48. Perry, R.B., 1912, Present Philosophical Tendencies: A Critical Survey of Naturalism Idealism Pragmatism and Realism Together with a Synopsis of the Pilosophy of William James, New York: Longmans Green and Co.
49. Peterson, I., 1998, The Limits of Mathematics, The Mathematical Association of America.
<http://www.sciencenews.org/>
50. Pierce, C.S., 1878, “How to Make Our Ideas Clear”. Popular Science Monthly 1(January 1878), 286-302. <http://www.pierce.org/
51. Podnieks, K., 1992, “Set theory, axioms, Zermelo, Fraenkel, Frankel, infinity, Cantor, Frege, Russell, paradox, formal, axiomatic, Russell paradox, axiom, axiomatic set theory, comprehension, axiom of infinity, ZF, ZFC” <http://www.ltn.lv/ ~podnieks /gt.html>
52. Podnieks, K., 1992, Platonism, Intuition And The Nature Of Mathematics,<http://www.ltn.lv/~podnieks/gt.html>
53. Poortman, J.J., 2004, Philosophy of Mind, ,<http://en.wikipedia.org/wiki/Parallelism>
54. Posy, C., 1992, Philosophy of Mathematics, http://www.cs.washington.edu/homes/gjb.doc/philmath.htm
55. Rand, A, Binswanger, H., Peikoff, P.,1990, “Introduction to Objectivist Epistemology”,<http://www.literature-reviews.com/Objectivism_The_Philosophy_of_Ayn_Rand_Library_Volume_6_0452011019.html>
56. Randall, A., 1998, In Defence of Transcendental idealism, < http://home.ican.net/>
57. Robinson, H., 2003, Dualism, Stanford Encyclopedia of Philosophy <http://plato.stanford.edu/cgi-bin/encyclopedia/archinfo.cgi?entry=dualism>
58. Rorty in Tuchanska, B.,1999, “Is a Non-Foundationalist Epistemology Possible?”,
<http://www.Google.com/Tuchanska>
59. Ross, D.S., 2003,“Philosophy of Mathematics”, Foundations Study Guide: Philosophy of Mathematics, <http://www.foundations_phil-of- mathematics.asp?>
60. Ross, K.L., 1997, Thought Experiments on the Soul, <http://www.friesian.com/ross/>
61. Ross, K.L., 2001, “Einstein's Equivalence Principle.”. <http://www.Friesian.com/ross/>
62. Ross, K.L., 2001, Kant's First Antinomy of Space and Time: Critique of Pure Reason, pp. A 426-429, Norman Kemp Smith’s translation, , <http://www. Friesian.com/ross/>
63. Ross, K.L., 2002, Kant's Transcendental Idealism, <http://www. Friesian.com/ross/>
64. Royce's, J., 1892, The Spirit of Modern Philosophy, Lecture 4: Kant "The Rediscovery of the Inner Life: From Spinoza to Kant, Boston: Houghton, Mifflin (1892): 101-134.
65. Searle, J.R., 1992, The Rediscovery of the Mind, the MIT Press, 1992, p. 27
66. Shore, E., 2004, Some Esential Points in Reading The Critique of Pure Reason, 20th The World Congress Phylosophy
67. Silverman, A., 2003, Plato's Middle Period Metaphysics and Epistemology, Stanford Encyclopedia of Philosophy, <silverman.3@osu.edu>
68. Smit, H., 2003, “Lisa Shabel: Mathematics in Kant’s Critical Philosophy.”, <Notre Dame Philosophical Reviews>.
69. Soehakso, RMJT, 1989, “Some Thought on Philosophy and Mathematics”, Yogyakarta: Regional Conference South East Asian Mathematical Society
70. Stefanik, R., 1994, “Structuralism, Category Theory and Philosophy of Mathematics”,
<http://www.mmsysgrp.com/mathstrc.htm>
71. Stefanik, R., 1994, “The Structures of Reality Truth, Invariance and Scientific Objectivity”, MSG Press: Washington. Suber, P., 2000, Alignments with the Categories, <http://www.earlham.edu/~phil/>
72. Tait, W.W., 1983, “Beyond the axioms: The question of objectivity in mathematics”, <http://home.uchicago.edu/~wwtx/objectivity.pdf.>
73. Tuchanska, B.,1999, “Is a Non-Foundationalist Epistemology Possible?”,<http://www.Google.com/Tuchanska>
74. Wegner, P., 2004, “Modeling, Formalization, and Intuition.” Department of Computer Science. <http://www.google.com/ wiki/Main+Page>
75. Weir A., 2004, “A Neo-Formalist Approach to Mathematical Truth”, <http://en.wikipedia.org/wiki/GNU_FDL>
76. Wilder,R.L., 1952, Introduction to the Foundation of Mathematics, New York
77. Yablo, S., 2003, “Why I am Not a Nominalist”, <http://www.nyu.edu/gsas/dept/philo/courses/factual/ papers/ Yablo Nominalist. pdf.>
78. Zalta, E.N., 2003, Frege's Logic, Theorem, and Foundations for Arithmetic, Stanford Encyclopedia of Philosophy, <http://plato.standford.edu/cgi-bin/encyclopedia/>
79. Zangwill, N., 2003, Aesthetic Judgment, Stanford Encyclopedia of Philosophy, Retrieved 2004<http://plato.stanford.edu/cgi-bin/encyclopedia/ archinfo.cgi? entry= aesthetic- judgment>
80. Zhongwen, 2003, “Existence and Reality”, <GNU Free Documentation License>
81. Ziniewicz, G.L., 1996, “Kant: How Do We Know That We Know What We Know’,
<http://www.fred.net/tzaka/phil.htm>
1. Motivasi mempelajari dan mengembangkan filsafat ilmu (Matematika dan Pendidikan Matematika)
2. Sikap yang menunjang pengembangan filsafat ilmu(Matematika dan Pendidikan Matematika)
3. Pengetahuan aspek pengembangan filsafat ilmu (Matematika dan Pendidikan Matematika)
4. Keterampilan pengembangan filsafat ilmu (Matematika dan Pendidikan Matematika)
5. Pengalaman pengembangan filsafat ilmu (Matematika dan Pendidikan Matematika)
Mata Kuliah : Filsafat Ilmu
Jumlah Semester : 2
Semester : Gasal
Dosen : Dr. Marsigit, MA
I. Deskripsi Mata Kuliah
Mata Kuliah ini dimaksudkan untuk memberi kesempatan dan pelayanan kepada mahasiswa untuk membangun pemahaman dan teori tentang filsafat ilmu.Kajian perkuliahan meliputi:
(1) Persoalan-persoalan Pokok dalam Pengembangan Ilmu (Matematika dan Pendidikan Matematika),
(2) Karakteristik Ilmu (Matematika dan Pendidikan Matematika),
(3) Obyek Ilmu (Matematika dan Pendidikan Matematika),
(4) Metode Pengembangan Ilmu (Matematika dan Pendidikan Matematika),
(5) Alat Pengembangan Ilmu (Matematika dan Pendidikan Matematika),
(6) Sejarah Perkembangan Ilmu (Matematika dan Pendidikan Matematika),
(7) Pre-Asumsi dan Asumsi Dasar Pengembangan Ilmu (Matematika dan Pendidikan Matematika),
(8) Sumber-sumber dan Batas-batas Pengembangan Ilmu (Matematika dan Pendidikan Matematika),
(9) Pembenaran Ilmu (Matematika dan Pendidikan Matematika),
(10) Prinsip-prinsip Pengembangan Ilmu (Matematika dan Pendidikan Matematika),
(11) Berbagai Aliran Pengembangan Ilmu (Matematika dan Pendidikan Matematika),
(12) Ontologi Ilmu (Matematika dan Pendidikan Matematika),
(13) Epistemologi Ilmu (Matematika dan Pendidikan Matematika), dan
(14) Aksiologi Ilmu (Matematika dan Pendidikan Matematika),
(15) Filsafat Matematika,
(16) Filsafat Pendidikan Matematika
Dalam perkuliahan ini mahasiswa diberi kesempatan dan pelayanan untuk membangun pemahaman dan teori tentang filsafat ilmu melalui berbagai kegiatan meliputi: kegiatan ekspositori, diskusi, dan penugasan dosen agar dapat mengembangkan tesis-tesis pengembangan ilmu, mengembangkan anti tesis pengembangan ilmu, melakukan sintesis-sintesis untuk menghasilkan tesis-tesis baru pengembangan ilmu, dan membangun struktur ontologi, epistemologi dan aksiologi filsafat ilmu pada umumnya, filsafat ilmu (matematika) dan filsafat ilmu (pendidikan matematika). Semua kegiatan tersebut dilakukan dan dikembangkan dalam kerangka pemahaman dan pengembangan jati diri manusia beserta ilmunya secara hermeneutikal.
II. Tujuan Mata Kuliah/ Kompetensi yang dikembangkan
Selama dan setelah mengikuti perkuliahan ini, mahasiswa diharapkan:- Memiliki motivasi dan keinginan yang tinggi disertai kesadaran akan pentingnya memahami dan mempelajari filsafat ilmu berdasarkan keyakinan dan pengalaman hidupnya.
- Memiliki dan mengembangkan sikap atau perilaku yang menunjang serta sinkron dengan keinginannya mempelajari dan mengembangkan filsafat ilmu.
- Memiliki dan mengembangkan pengetahuan dan mengetahui dan menggali sumber-sumber pengetahuan beserta obyek, alat dan metode pembenarannya.
- Memiliki dan mengembangkan keterampilan untuk mengenali, menggali dan memproduksi tesis-tesis dan anti-tesisnya serta melakukan sintesis-sintesis untuk memproduksi tesis-tesis baru.
- Memiliki dan mengembangkan pengalaman untuk merefleksikan diri dalam komunitas sosialnya perihal motivasi, sikap, pengetahuan dan keterampilannya mengembangkan ilmu, ilmu (matematika), dan ilmu (pendidikan matematika).
III. Strategi Perkuliahan dan Bentuk Kegiatan
A. Strategi Perkuliahan
Strategi perkuliahan dikembangkan dengan prinsip belajar dapat dilakukan anywhere, anytime dan kontinu (tidak dibatasi ruang dan waktu). Oleh karena itu strategi yang dikembangkan meliputi perkuliahan tatap muka dan perkuliahan Online.Perkuliahan tatap muka meliputi:
1. eksposisi dari dosen,
2. presentasi mahasiswa,
3. diskusi dosen mahasiswa, mahasiswa-mahasiswa,
4. mencari dan mengembangkan sumber belajar (internet dan referensi buku),
5. menyusun makalah untuk topik-topik terkait,
6. presentasi makalah,
7. balikan dosen
B. Bentuk Kegiatan:
1. Perkuliahan Tatap Mukaa. Tugas Mandiri Eksplorasi Sumber
b. Diskusi Kelas
c. Presentasi
d. Seminar
e. Ujian Sisipan
f. Ujian Akhir
2. Perkuliahan Online
Kuliah dan Tanya Jawab Online melalui http://powermathematics.blogspot.com
IV. Sumber Acuan Utama:
1. Bolzano, B., 1810, “Appendix: On the Kantian Theory of the Construction of Concepts through Intuitions” in Ewald, W., 1996, “From Kant to Hilbert: A Source Book in the Foundations of Mathematics, Volume I”, Oxford: Clarendon Press2. Ernest, P., 1994, Mathematics, Education and Philosophy: An International
Perspective. The Falmer Press: London.
3. Ernest, P., 2002, What Is The Philosophy Of Mathematics Education?
4. Eves, H and Newsom, C.V., 1964, “An Introduction to the Foundation & Fundamental Concepts of Mathematics”, New York: Holt, Rinehart and Winston
5. Ewald, W., 1996, “From Kant to Hilbert: A Source Book in the Foundations of Mathematics, Volume I”, Oxford: Clarendon Press
6. Hers, R., 1997, What is Mathematics, Really?, London: Jonathan Cape
7. Kant, I., 1781, Critic of Pure Reason, Translatedby J.M.D. Meiklejohn
8. Mayer, F., 1951, “A History of Modern Philosophy”, New York: American Book Company
9. Perry, R.B., 1912, Present Philosophical Tendencies: A Critical Survey of Naturalism Idealism Pragmatism and Realism Together with a Synopsis of the Pilosophy of William James, New York: Longmans Green and Co.
Tambahan:
1. Bold, T., 2004, “Concepts on Mathematical Concepts” <http://www.usfca.edu/philosophy/discourse/8/bold.doc.>
2. Bonaccini, J.A., 2004, “Concerning the Relationship Between Non-Spatiotemporality and Unknowability of Things in Themselves in Kant's Critique of Pure Reason”, Federal University of Rio Grande do Norte/National Research and Development Council, Brazil, <juan@cchla.ufrn.br >
3. Bowman, C., 2001, “Kant and the Project of Enlightenment”, Department of Philosophy, University of Pennsylvania
4. Brook, A., 2004, “Kant and Cognitive Science, <http://www.teleskop.es/ciencia/CienciaA03>
5. Byrne, P., 2004, Moral Arguments for the Existence of God, Stanford Encyclopedia of Philosophy, <peter.byrne@kcl.ac.uk>
6. Carrier, M., 2003, How to tell causes from effects: Kant's causal theory of time and modern approaches, Studies In History and Philosophy of Science Part A Volume 34, Issue 1 , Pages 59-71, Elsevier Science Ltd., < http://dx. doi/org/10/1016/S0039>
7. Chignell, A., 2004, “The Problem of Particularity in Kant’s Aesthetic Theory, Aesthetics and Philosophy of the Arts”, <http://www.bu.edu/wcp/ MainAest.htm>
8. Clarke. “Kant's Critique of Pure Reason.” BOOK II: ANALYTIC OF PRINCIPLE”,<http://www.bright.net/~clarke/kant/analogy1.htm>
9. Evan, J.D.G., 1999, “Kant's Analysis of the Paralogism of Rational Psychology in Critique of Pure Reason” Edition B, Kantian Review vol. 3 (1999), 99-105
10. Eves, H and Newsom, C.V., 1964, “An Introduction to the Foundation & Fundamental Concepts of Mathematics”, New York: Holt, Rinehart and Winston
11. Gos, M., 2003, “Mathematical Models of Spacetime in Contemporary Physics and Essential Issues of the Ontology of Spacetime, Philosophy of Mathematics”, <http: //www. bu.edu /wcp/MainMath.htm>
12. Gottfried, P., 1987, “Kantian Time And Space Reconsidered “, FORMS OF INTUITION, Issue Date: AUGUST 1987 Volume:02 Page: 689, <http://www.worldandi.com/subscribers/toc.asp>
13. Hegel, G.W.F, 1873, “The Critical Philosophy: from The Shorter Logic”, translated by William Wallace, Clarendon Press
14. Hers, R., 1997, “What is Mathematics”, Really?, London: Jonathan Cape, pp.9
15. Hoover, A.J., 2004, “Arguments for the Existence of God” <http://www.ditex.com/index.html>
16. Hutchison, F., 2004, “Cultural Cycles IX: Rationalism vs Empiricism, index.htm IV. Second Attitude of Thought to Objectivity”, Encyclopaedia of the Philosophical Sciences,<http://www.marxists.org/reference/ archive/hegel/index.htm>
17. Irvine, A.D., 2003, “Principia Mathematica”, Stanford Encyclopedia of Philosophy,<http://plato.standford.edu/cgi-bin/encyclopedia/ archinfo.cgi? entry=principia mathematica>
18. Jarosław Mrozek , 2004, “Philosophy of Mathematics: The Problems of Understanding Mathematics”, Gdańsk: University of Gdańsk Kant, I., 1783, “Prolegomena to An Future Metaphysic (tr. By Paul Carus)”, <www.phil-books.com/ >
19. Johnes, R.B., 2004, “Transcendental Doctrine of Method”,<http://www.rbjohnes.com/http://www.rbjones.com/L:\GRAND.DISSERTASI.AFTER.KOMPRE\
index.htm>
20. Jones, R.B.,1997, A Short History of Rigour in Mathematics, <http://www.rbjones.com/rbjpub/rbj.htm>
21. Kant, I, 1783. “Prolegomena to Any Future Metaphysic.” Trans. Paul Carus. <www.phil-books.com/ >
22. Kant, I. “The Critic of Pure Reason.” Trans. Meiklejohn, J.M.D. New York: The MaCmillan Company. 1914. <http://www.encarta.msn. com/>
23. Kant, I. “Theoretical Philosophy 1755-1770.” Trans. David Walford. Cambridge: Cambridge University Press. 1992
24. Kant, I., 1790, The Critic of Judgment, translated by James Creed Meredith
25. Kant, I., 1931, “The Critique of Judgment (tr. J.Bernard)”, New York: The MaCmillan Company.
26. Kazlev, A.A., 2004, René Descartes And The Legacy Of Mind/Body Dualism,<http://serendip.brynmawr.edu/Mind/Descartes.html >
27. Kelley, D., 1996, Foundations Study Guide: Epistemology, Objectivist Center,<http://www.objectivistcenter.org/text/ foundations epistemology. osp>
28. KLEIN, P.D., 1998, “Epistemology” In E. Craig (Ed.), Routledge Encyclopedia of Philosophy. London: Routledge. <http://www.rep.routledge.com /article/P059>
29. Koetsier, T., 1991, “Lakatos' Philosophy of Mathematics, A Historical Approach”,<http://www.peccate.com/
30. Krausz in Tuchanska, B.,1999, “Is a Non-Foundationalist Epistemology Possible?”,<http://www.Google.com/Tuchanska>
31. Landry, E., 2004, Semantic Realism: Why Mathematicians Mean What They Say,
32. Law, M., et. Al, 1998, “Critical Review Form for Qualitative Studies.” McMaster University Occupational Therapy Evidence-Based Practice Research Group.
33. Lemanska, A., 2004, “Philosophy of Mathematics: The Issue of Experiment in Mathematics”, Christian Philosophy of Academy of Catholic Theology
34. Linnebo, Ø., 2003, “Review of Stewart Shapiro, Philosophy of Mathematics: Structure and Ontology”, < http://www.oystein.linnebo@filosofi.uio.no>
35. Linnebo, O., 2003, Frege’s Conception of Logic: From Kant to Grundgesetze,<http://folk.uio.no/oysteinl/FregesConception.pdf.>
36. Litlangs, 2002-2004, “Math Theory” <http://www.poetrymagic.co.uk/professional.html>http://www.sciencedirect.com/science?_ob=journalURL&_cdi
37. Manicas, P.T. 2003, Naturalism and Subjectivism: Philosophy for the Future?. <Future Philosophy.PDF>
38. Mattey, G.J., 2004, Kant Lexicon, G. J. Mattey's Kant Home Page, http://www.philosophy.ucdavis.edu/kant/KANT.HTM
39. Mayer, F., 1951, A History of Modern Philosophy, California: American Book Company
40. Miller, B., 1976, Existence, Stanford Encyclopedia of Philosophy,<http://www.seop.leeds.ac.uk/index.htm>
41. Mortensen, C., 2000, “Inconsistent Mathematics”, <http:www.mortensen>
42. Mrozek , J. “Philosophy of Mathematics: The Problems of Understanding Mathematics.” Gdańsk: University of Gdańsk. 2004
43. Mycielski, J.,2000, “Ontology of Mathematics.” Colorado: FOM EDU.2000.<jmyciel@euclid.>
44. Nikulin, D., 2004, Platonic Mathematics: Matter, Imagination and Geometry- Ontology,Natural Philosophy and Mathematics in Plotinus, Proclus and Descartes,
<http://www.amazon.com/exec/obidos/ AZIN/075461574/ wordtradecom>
45. Oddie, G., 2001, Truthlikeness, Stanford Encyclopedia of Philosophy, Paideia, Philosophy of Mathematics. <elaine@philo.mcgill.ca>
46. Otte, M. , 2001, “ Mathematical Epistemology From A Semiotic Point Of View: Paper presented at PME 2001 in Utrecht”, <http://www.math. uncc.edu / ~sae/dg3/otte-ew- PME25.pdf.>
47. Perry, J., 1996, Philosophy 102: Descartes to Kant, <http://cbl.leed.ac.uk>
48. Perry, R.B., 1912, Present Philosophical Tendencies: A Critical Survey of Naturalism Idealism Pragmatism and Realism Together with a Synopsis of the Pilosophy of William James, New York: Longmans Green and Co.
49. Peterson, I., 1998, The Limits of Mathematics, The Mathematical Association of America.
<http://www.sciencenews.org/>
50. Pierce, C.S., 1878, “How to Make Our Ideas Clear”. Popular Science Monthly 1(January 1878), 286-302. <http://www.pierce.org/
51. Podnieks, K., 1992, “Set theory, axioms, Zermelo, Fraenkel, Frankel, infinity, Cantor, Frege, Russell, paradox, formal, axiomatic, Russell paradox, axiom, axiomatic set theory, comprehension, axiom of infinity, ZF, ZFC” <http://www.ltn.lv/ ~podnieks /gt.html>
52. Podnieks, K., 1992, Platonism, Intuition And The Nature Of Mathematics,<http://www.ltn.lv/~podnieks/gt.html>
53. Poortman, J.J., 2004, Philosophy of Mind, ,<http://en.wikipedia.org/wiki/Parallelism>
54. Posy, C., 1992, Philosophy of Mathematics, http://www.cs.washington.edu/homes/gjb.doc/philmath.htm
55. Rand, A, Binswanger, H., Peikoff, P.,1990, “Introduction to Objectivist Epistemology”,<http://www.literature-reviews.com/Objectivism_The_Philosophy_of_Ayn_Rand_Library_Volume_6_0452011019.html>
56. Randall, A., 1998, In Defence of Transcendental idealism, < http://home.ican.net/>
57. Robinson, H., 2003, Dualism, Stanford Encyclopedia of Philosophy <http://plato.stanford.edu/cgi-bin/encyclopedia/archinfo.cgi?entry=dualism>
58. Rorty in Tuchanska, B.,1999, “Is a Non-Foundationalist Epistemology Possible?”,
<http://www.Google.com/Tuchanska>
59. Ross, D.S., 2003,“Philosophy of Mathematics”, Foundations Study Guide: Philosophy of Mathematics, <http://www.foundations_phil-of- mathematics.asp?>
60. Ross, K.L., 1997, Thought Experiments on the Soul, <http://www.friesian.com/ross/>
61. Ross, K.L., 2001, “Einstein's Equivalence Principle.”. <http://www.Friesian.com/ross/>
62. Ross, K.L., 2001, Kant's First Antinomy of Space and Time: Critique of Pure Reason, pp. A 426-429, Norman Kemp Smith’s translation, , <http://www. Friesian.com/ross/>
63. Ross, K.L., 2002, Kant's Transcendental Idealism, <http://www. Friesian.com/ross/>
64. Royce's, J., 1892, The Spirit of Modern Philosophy, Lecture 4: Kant "The Rediscovery of the Inner Life: From Spinoza to Kant, Boston: Houghton, Mifflin (1892): 101-134.
65. Searle, J.R., 1992, The Rediscovery of the Mind, the MIT Press, 1992, p. 27
66. Shore, E., 2004, Some Esential Points in Reading The Critique of Pure Reason, 20th The World Congress Phylosophy
67. Silverman, A., 2003, Plato's Middle Period Metaphysics and Epistemology, Stanford Encyclopedia of Philosophy, <silverman.3@osu.edu>
68. Smit, H., 2003, “Lisa Shabel: Mathematics in Kant’s Critical Philosophy.”, <Notre Dame Philosophical Reviews>.
69. Soehakso, RMJT, 1989, “Some Thought on Philosophy and Mathematics”, Yogyakarta: Regional Conference South East Asian Mathematical Society
70. Stefanik, R., 1994, “Structuralism, Category Theory and Philosophy of Mathematics”,
<http://www.mmsysgrp.com/mathstrc.htm>
71. Stefanik, R., 1994, “The Structures of Reality Truth, Invariance and Scientific Objectivity”, MSG Press: Washington. Suber, P., 2000, Alignments with the Categories, <http://www.earlham.edu/~phil/>
72. Tait, W.W., 1983, “Beyond the axioms: The question of objectivity in mathematics”, <http://home.uchicago.edu/~wwtx/objectivity.pdf.>
73. Tuchanska, B.,1999, “Is a Non-Foundationalist Epistemology Possible?”,<http://www.Google.com/Tuchanska>
74. Wegner, P., 2004, “Modeling, Formalization, and Intuition.” Department of Computer Science. <http://www.google.com/ wiki/Main+Page>
75. Weir A., 2004, “A Neo-Formalist Approach to Mathematical Truth”, <http://en.wikipedia.org/wiki/GNU_FDL>
76. Wilder,R.L., 1952, Introduction to the Foundation of Mathematics, New York
77. Yablo, S., 2003, “Why I am Not a Nominalist”, <http://www.nyu.edu/gsas/dept/philo/courses/factual/ papers/ Yablo Nominalist. pdf.>
78. Zalta, E.N., 2003, Frege's Logic, Theorem, and Foundations for Arithmetic, Stanford Encyclopedia of Philosophy, <http://plato.standford.edu/cgi-bin/encyclopedia/>
79. Zangwill, N., 2003, Aesthetic Judgment, Stanford Encyclopedia of Philosophy, Retrieved 2004<http://plato.stanford.edu/cgi-bin/encyclopedia/ archinfo.cgi? entry= aesthetic- judgment>
80. Zhongwen, 2003, “Existence and Reality”, <GNU Free Documentation License>
81. Ziniewicz, G.L., 1996, “Kant: How Do We Know That We Know What We Know’,
<http://www.fred.net/tzaka/phil.htm>
V. Penilaian
Penilaian meliputi kemampuan lisan, tulis dan portfolio dengan aspek-aspek meliputi:1. Motivasi mempelajari dan mengembangkan filsafat ilmu (Matematika dan Pendidikan Matematika)
2. Sikap yang menunjang pengembangan filsafat ilmu(Matematika dan Pendidikan Matematika)
3. Pengetahuan aspek pengembangan filsafat ilmu (Matematika dan Pendidikan Matematika)
4. Keterampilan pengembangan filsafat ilmu (Matematika dan Pendidikan Matematika)
5. Pengalaman pengembangan filsafat ilmu (Matematika dan Pendidikan Matematika)
VI. Kegiatan Perkuliahan
Perte
muan ke
|
Kompetensi Dasar
Mahasiswa:
|
Materi Pokok
|
Strategi
Perkuliahan
|
Sumber
Bahan
|
1.
|
Mengembangkan tesis,
anti-tesis dan melakukan sintesis terhadap
persoalan-persoalan pokok dalam Pengembangan
|
1. Persoalan-persoalan
Pokok dalam Pengembangan Ilmu (Matematika dan Pendidikan
|
Ekspositori,
diskusi, presentasi, refleksi
|
Pilih
yang sesuai
|
Ilmu(Matematika dan
Pendidikan Matematika)
|
Matematika)
| |||
2.
|
Mengembangkan tesis, anti-tesis dan melakukan
sintesis terhadap karakteristik
ilmu(Matematika dan
Pendidikan Matematika)
|
2. Karakteristik Ilmu
(Matematika dan Pendidikan Matematika)
|
Ekspositori, diskusi,
presentasi, refleksi
|
Pilih yang
sesuai
|
3.
|
Mengembangkan tesis,
anti-tesis dan melakukan sintesis terhadap obyek ilmu(Matematika dan Pendidikan Matematika)
|
3. Obyek dan Metode Ilmu
(Matematika dan Pendidikan Matematika)
|
Ekspositori,
diskusi, presentasi, refleksi
|
Pilih
yang sesuai
|
4.
|
Mengembangkan tesis,
anti-tesis dan melakukan sintesis terhadap alat pengembangan ilmu(Matematika dan Pendidikan Matematika)
|
4. Alat Pengembangan Ilmu
(Matematika dan Pendidikan Matematika)
|
Ekspositori,
diskusi, presentasi, refleksi
|
Pilih
yang sesuai
|
Ujian Sisipan I
| ||||
5.
|
Mengembangkan tesis,
anti-tesis dan melakukan sintesis terhadap sejarah perkembangan ilmu(Matematika dan Pendidikan Matematika)
|
5. Sejarah Perkembangan
Ilmu (Matematika dan Pendidikan Matematika)
|
Ekspositori,
diskusi, presentasi, refleksi
|
Pilih
yang sesuai
|
6.
|
Mengembangkan tesis,
anti-tesis dan melakukan sintesis terhadap pre- asumsi dan asumsi dasar pengembangan ilmu(Matematika dan Pendidikan Matematika)
|
6. Pre-Asumsi dan Asumsi
Dasar Pengembangan Ilmu (Matematika dan Pendidikan Matematika)
|
Ekspositori,
diskusi, presentasi, refleksi
|
Pilih
yang sesuai
|
7.
|
Mengembangkan tesis,
anti-tesis dan melakukan sintesis terhadap Sumber- sumber dan batas-batas pengembangan ilmu(Matematika dan Pendidikan Matematika)
|
7. Sumber-sumber dan
Batas-batas Pengembangan Ilmu (Matematika dan Pendidikan Matematika)
|
Ekspositori,
diskusi, presentasi, refleksi
|
Pilih
yang sesuai
|
8.
|
Mengembangkan tesis, anti-tesis dan melakukan
sintesis terhadap
pembenaran ilmu(Matematika dan Pendidikan Matematika)
|
8. Pembenaran dan Prinsip- prinsip Pengembangan
Ilmu (Matematika dan
Pendidikan
Matematika)
|
Ekspositori, diskusi,
presentasi,
refleksi
|
Pilih yang
sesuai
|
Sisipan II
| ||||
9.
|
Mengembangkan tesis,
|
9. Ontologi Ilmu
|
Ekspositori,
|
Pilih
|
anti-tesis dan melakukan
sintesis terhadap ontologi ilmu
|
(Matematika dan
Pendidikan
Matematika)
|
diskusi,
presentasi, refleksi
|
yang
sesuai
| |
10.
|
Mengembangkan tesis, anti-tesis dan melakukan
sintesis terhadap Berbagai
Aliran Pengembangan Ilmu(Matematika dan Pendidikan Matematika)
|
10. Berbagai Aliran
Pengembangan Ilmu
(Matematika dan Pendidikan Matematika)
|
Ekspositori, diskusi,
presentasi, refleksi
|
Pilih yang
sesuai
|
11.
|
Mengembangkan tesis,
anti-tesis dan melakukan sintesis terhadap epistemologi ilmu (Matematika dan Pendidikan Matematika)
|
11. Epistemologi Ilmu
(Matematika dan Pendidikan Matematika)
|
Ekspositori,
diskusi, presentasi, refleksi
|
Pilih
yang sesuai
|
12.
|
Mengembangkan tesis, anti-tesis dan melakukan
sintesis terhadap aksiologi
ilmu(Matematika dan
Pendidikan Matematika)
|
12. Aksiologi Ilmu
(Matematika dan Pendidikan Matematika)
|
Ekspositori, diskusi,
presentasi,
refleksi
|
Pilih yang
sesuai
|
13.
|
Mengembangkan tesis,
anti-tesis dan melakukan sintesis terhadap filsafat ilmu (matematika)
|
13. Filsafat Matematika
|
Ekspositori,
diskusi, presentasi, refleksi
|
Pilih
yang sesuai
|
14.
|
Mengembangkan tesis,
anti-tesis dan melakukan sintesis terhadap filsafat ilmu (pendidikan matematika)
|
14. Filsafat Pendidikan
Matematika
|
Ekspositori,
diskusi, presentasi, refleksi
|
Pilih
yang sesuai
|
UJIAN AKHIR
|
Posting Komentar
Berkomentar sesuai dengan judul blog ini yah, berbagi ilmu, berbagi kebaikan, kunjungi juga otoriv tempat jual aksesoris motor dan mobil lengkap