1. Make a truth table for this sentence : (a ∨ b ⇒ c)  ⇔ (a ⇒ c)  &  ( b ⇒ c )
2. Prove that it is a tautology without truth table :
(a ⇒ ( b ⇒ c )) ⇒ ( a & b ⇒ c )
3. Prove that the following argument is valid by constructing a sentential
derivation.  (not by reduction ad absurdum ).

If  Andi is a young man then anna is young woman.  If Andi is a young man and anna is young woman then Budi is genius. If  Andi is a young man and Budi is genius then Iwan is policeman. Budi is not genius or Iwan is not policeman. Therefore, Andi is not young man.

4. Prove that above argument is valid using reduction ad absurdum ( RAA).
5. Write each sentence below using quantor:
a).  No students are lawyer
b).   Every people has  money
c).  Anyone who likes flower  is either senior or junior.

Post a Comment

Berkomentar sesuai dengan judul blog ini yah, berbagi ilmu, berbagi kebaikan, kunjungi juga otoriv tempat jual aksesoris motor dan mobil lengkap

Lebih baru Lebih lama